
Accessing K8S pods

 This is some note, nothing serious.

Exposing services to external clients
Few ways to make a service accessible externally.

• Port-forwarding

• NodePort Service Type

• Service Object (LoadBalancer Service Type)

• Create Ingress Resource (Radically Different Mechanism)

Forwarding a Local Network Port to a Port in
The Pod
When you want to talk to a specific pod without going through a service (for debugging or other reasons),

Kubernetes allows you to configure port forwarding to the pod.

This is done through the kubectl port-forward command. The following command will forward your

machine’s local port 8888 to port 8080 of your e.g kubia-manual pod.

Example:

$ kubectl port-forward kubia-manual 8888:8080

Output:

... Forwarding from 127.0.0.1:8888 -> 8080

... Forwarding from [::1]:8888 -> 8080

Connecting to The Pod Through the Port Forwarder

In a different terminal, you can now use curl to send an HTTP request to your pod through the kubectl

port-forward proxy running on localhost:8888.

Example:

$ curl localhost:8888

Output:

You've hit kubia-manual

1

Service Object
Each pod gets its own IP address, but this address is internal to the cluster and isn’t accessible from outside

of it. To make the pod accessible from the outside, you’ll expose it through a Service object. You’ll create a

special service of type LoadBalancer, because if you create a regular service (a ClusterIP service), like the

pod, it would also only be accessible from inside the cluster. By creating a LoadBalancer type service, an

external load balancer will be created and you can connect to the pod through the load balancer’s public IP.

Creating a Service Object

To create the service, you’ll tell Kubernetes to expose the ReplicationController you created:

Using YAML file

Manifest:

apiVersion: v1
kind: Service
metadata:
 name: kubia
spec:
 ports:
 - port: 80 # service's port
 targetPort: 8080 # the forward-to port by service
 selector: # all pods labeled `kubia` will follow/select this service
 app: kubia

Apply the service:

$ kubectl create -f kubia-srv.yaml

Using kubectl CLI options

Template:

$ kubectl expose rc <rep-controller-name> --type=LoadBalancer --name <lb-name>

Expose:

$ kubectl expose rc kubia --type=LoadBalancer --name kubia-http

Output:

service "kubia-http" exposed

Remotely Executing Commands in Running Containers:

• You’ll also need to obtain the cluster IP of your service (using kubectl get svc, for example)

2

$ kubectl exec kubia-7nog1 -- curl -s http://10.111.249.153

Output:

You've hit kubia-gzwli

Session Affinity on the Service

If you execute the same command a few more times, you should hit a different pod with every invocation,

because the service proxy normally forwards each connection to a randomly selected backing pod, even if

the connections are coming from the same client.

If, on the other hand, you want all requests made by a certain client to be redirected to the same pod every

time, you can set the service’s sessionAffinity property to ClientIP (instead of None, which is the default),

as shown in the following listing.

Service with ClientIP Session Affinity Manifest

apiVersion: v1
kind: Service
spec:
 sessionAffinity: ClientIP
 ...

• Kubernetes supports only two types of service session affinity: None and ClientIP.

• Kubernetes services don’t operate at the HTTP level. Services deal with TCP and UDP packets and

don’t care about the payload they carry. Because cookies are a construct of the HTTP protocol, services

don’t know about them, which explains why session affinity cannot be based on cookies.

Exposing Multiple Ports in the Same Service

Manifest

apiVersion: v1
kind: Service
metadata:
 name: kubia
spec:
 ports:
 - name: http
 port: 80
 targetPort: 8080
 - name: https
 port: 443
 targetPort: 8443
 selector:
 app: kubia

Using Named Ports

You can give a name to each pod’s port and refer to it by name in the service spec.

3

Specifying port names in a pod definition Manifest:

kind: Pod
spec:
 containers:
 - name: kubia
 ports:
 - name: http
 containerPort: 8080
 - name: https
 containerPort: 8443

Referring to named ports in a service Manifest:

apiVersion: v1
kind: Service
spec:
 ports:
 - name: http
 port: 80
 targetPort: http
 - name: https
 port: 443
 targetPort: https

Connecting to services living outside the cluster
Instead of having the service redirect connections to pods in the cluster, you want it to redirect to external

IP(s) and port(s).

This allows you to take advantage of both service load balancing and service discovery. Client pods running

in the cluster can connect to the external service like they connect to internal services.

Service Endpoints

Services don’t link to pods directly. Instead, a resource sits in between—the Endpoints resource. You may

have already noticed endpoints if you used the kubectl describe command on your service.

Full details of a service:

$ kubectl describe svc kubia

Output:

Name: kubia
Namespace: default
Labels: <none>
Selector: app=kubia
Type: ClusterIP
IP: 10.111.249.153
Port: <unset> 80/TCP
Endpoints: 10.108.1.4:8080,10.108.2.5:8080,10.108.2.6:8080
Session Affinity: None
No events.

4

An Endpoints resource (yes, plural) is a list of IP addresses and ports exposing a service. The Endpoints

resource is like any other Kubernetes resource, so you can display its basic info with kubectl get.

$ kubectl get endpoints kubia

Output:

NAME ENDPOINTS AGE
kubia 10.108.1.4:8080,10.108.2.5:8080,10.108.2.6:8080 1h

Manually Configuring Service Endpoints

• having the service’s endpoints decoupled from the service allows them to be configured and

updated manually.

• If you create a service without a pod selector, Kubernetes won’t even create the Endpoints

resource

◦ after all, without a selector, it can’t know which pods to include in the service

• To create a service with manually managed endpoints, you need to create both a Service and an

Endpoints resource

A service without a pod selector: external-service.yaml

apiVersion: v1
kind: Service
metadata:
 name: external-service # must match the endpoints name
spec:
 ports:
 - port: 80

• Endpoints are a separate resource and not an attribute of a service

• Because you created the service without a selector, the corresponding Endpoints resource hasn’t

been created automatically

A manually created Endpoints resource: external-service-endpoints.yaml

apiVersion: v1
kind: Endpoints
metadata:
 name: external-service # must match the service name
subsets:
 - addresses:
 - ip: 11.11.11.11
 - ip: 22.22.22.22
 ports:
 - port: 80 # target port of endpoints

5

Exposing services to external clients
download

6

https://hossein-lap.github.io/pdfs/notes/k8s-ingress-loadbalancer.adoc

	Accessing K8S pods
	Exposing services to external clients
	Forwarding a Local Network Port to a Port in The Pod
	Connecting to The Pod Through the Port Forwarder

	Service Object
	Creating a Service Object
	Session Affinity on the Service
	Exposing Multiple Ports in the Same Service
	Using Named Ports

	Connecting to services living outside the cluster
	Service Endpoints

	Exposing services to external clients

